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Abstract

In this paper we present a novel algorithm to synthesize an optimal decision

tree from OR-decision tables, an extension of standard decision tables, com-

plete with the formal proof of optimality and computational cost analysis. As

many problems which require to recognize particular patterns can be modeled

with this formalism, we select two common binary image processing algorithms,

namely connected components labeling and thinning, to show how these can be

represented with decision tables, and the benefits of their implementation as

optimal decision trees in terms of reduced memory accesses. Experiments are

reported, to show the computational time improvements over state of the art

implementations.

Keywords: Decision trees; Decision tables; Connected components labeling;

Thinning.

1. Introduction1

Decision tables are a formalism used to describe the behavior of a system2

whose state can be represented by the outcome of testing certain conditions.3

Given a particular state, the system performs a set of actions. Each line of the4

table is a rule, which drives an action.5
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A large class of image processing algorithms naturally leads to a decision6

table specification, such as all those algorithms in which the output value for7

each image pixel is obtained from the value of the pixel itself and of some of its8

neighbors. We refer to this class as local algorithms. In particular for binary9

images, we can model local algorithms by means of decision tables, in which the10

pixels values are the conditions to be tested and the output is chosen by the11

action corresponding to the conditions outcome.12

Decision tables may be converted to decision trees in order to generate a13

compact procedure to select the action to perform. Different decision trees for14

the same decision table might lead to more or less tests to be performed, and15

therefore to a higher or lower execution cost. The optimal decision tree is the16

one that requires on average the minimum cost when deciding which action17

execute [1].18

In [2] we introduced a novel form of decision tables, namely OR-Decision Ta-19

bles, which allow to include the representation of equivalent actions for a single20

rule. An heuristic to derive a decision tree for such decision tables was given,21

without guarantees on how good the derived tree was. In this paper, we further22

develop that formalism by providing an exact dynamic programming algorithm23

to derive optimal decision trees for such decision tables. The algorithm comes24

with a formal proof of correctness and study of computational cost.25

2. Preliminaries and notation26

A decision table is a tabular form that presents a set of conditions which27

must be tested and a list of corresponding actions to be performed: each row28

corresponds to a particular outcome for the conditions and it is called rule, each29

column corresponds to a particular set of actions to be performed. Different30

rules might have different probability to occur and testing conditions might be31

more o less expensive to test. We will call a decision table an AND-decision32

table if all the actions in a row must be executed when the corresponding rule33

occurs, instead we will call it an OR-decision table if any of the actions in a row34
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might be executed.35

Schumacher et al. [1] proposed a bottom-up Dynamic Programming tech-36

nique which guarantees to find the optimal decision tree given an expanded37

limited entry (binary) decision table, in which each row contains only one non-38

zero value. Lew [3] gives a Dynamic Programming approach for the case of39

extended entry and compressed AND-decision tables. In this paper, we extend40

Schumacher’s approach to OR-decision tables. A preliminary version of this41

algorithm appeared in [4], where no proof of correctness was given.42

In the following we will think of the set of rules as an L-dimensional Boolean43

space denoted by R, where L ∈ N is the given number of conditions. Testing44

conditions will be represented by position indexes of vectors in R, i.e. indexes in45

[1 . . . L]. Given any vector in R, a weight wi is associated to each position index46

i ∈ [1 . . . L], representing the cost of testing the condition in that particular47

position. Each vector in r ∈ R has a given probability pr ≥ 0 to occur, such48

that
∑

r∈R pr = 1.49

We will call set K ⊆ R a k-cube if it is a cube in {0, 1}L of dimension k, and50

it will be represented as a L-vector containing k dashes (−) and L − k values51

0’s and 1’s. The set of positions in which the vector contains dashes will be52

denoted as DK . The occurrence probability of the k-cube K is the probability53

PK of any element in K to occur, i.e. PK =
∑

r∈K pr. The set of all k-cubes,54

for each k = 0, . . . , L, will be denoted with Kk.55

Definition 1 (Extended Limited Entry OR-Decision Table). Given a set56

of actions A, an extended limited entry OR-decision table is the description of57

a function DT : R → 2A \ {∅}, meaning that any action in DT (r) might be58

executed when r ∈ R occurs.59

Given an OR-Decision Table DT and a k-cube K ∈ R, set AK denotes60

the actions (if any) that are common to all rules in K according to DT ; i.e.61

AK = ∩r∈KDT (r) (might be an empty set) .62

Definition 2 (Decision Tree). Given an OR-Decision Table DT and a k-63

cube K ⊆ R, a Decision Tree for K, according to DT , is a binary tree T with64
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the following properties:65

1. Each leaf ` corresponds to a k-cube, denoted by K`, that is a subset of K.66

The cubes associated to the set of leaves of the tree are a partition of K.67

Each leaf ` is associated to a non empty set of actions AK`
, associated68

to cube K` by function DT . Each internal node is labeled with an index69

i ∈ DK (i.e. there is a dash at position i in the vector representation of70

K) and is weighted by wi. Left (resp. right) outgoing edges are labeled71

with 0 (resp. 1).72

2. Two distinct nodes on the same root-leaf path can not have the same label.73

Root-leaf paths univocally identify, by means of nodes and edges labels, the74

(vector representation of the) cubes associated to leaves: positions labeling75

nodes on the path must be set to the value of the label on the corresponding76

outgoing edges, the remaining positions are set to a dash.77

When using decision tables to determine which action to execute, we need78

to know the value assumed by exactly L conditions to identify the row of the79

table that corresponds to the occurred rule. On the contrary, when we use a80

decision tree (derived form the decision table) we only have to know the values81

assumed by the conditions whose indexes label the root-leaf path leading to a82

leaf associated to the cube that contains the occurred rule. This path might be83

shorter than L, therefore using the tree we avoid to test the conditions that are84

not on the root-leaf path. The sum of the weights of the missing conditions gives85

an indication of the gain that we have, concerning that particular rule, in using86

the tree instead of the table. On average, the gain in making a decision is given87

by the sum of the gains given by rules in leaves, weighted by the probability88

that the rules associated to leaves occur; for this reason, the gain of a tree is a89

measure of the weights of the conditions that, on the average, we do not have90

to test in order to decide which actions to take when rules occur.91

Definition 3 (Gain of a Decision Tree). Given a k-cube K and a decision
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tree T for K, the gain of T is defined in the following way:

gain(T ) =
∑
`∈L

PK`

∑
i∈DK`

wi

 , (1)

where L is the set of leaves of the tree, DK`
⊆ DK ⊆ [1 . . . L] is the set of position92

in which cube K` have dashes and the wis are their corresponding weights. An93

Optimal Decision Tree for k-cube K is a decision tree for the cube with maximum94

gain (might not be unique).95

Observation 1. Given the definition of gain, we observe that:96

1. If PK = 0 for cube K, any decision tree for K has gain equal to zero as no97

element of the cube will ever occur. Moreover, a single leaf is the smallest98

possible tree representation of such a cube.99

2. If a tree is a leaf `, the gain of a leaf is well defined, as the summation in100

Eq. 1 has exactly one term, and K = K` .101

3. If a leaf ` corresponds to a 0-cube K` (meaning that all conditions must be102

tested), then the summation over indexes in DK`
is empty (being |DK`

| =103

0) and the gain of the leaf is zero.104

4. If a leaf has probability zero to occur, the gain is zero again. This makes105

sense, as there is no possible gain coming from rules that will never occur.106

3. Optimal Decision Tree Generation from OR-Decision Tables107

In order to derive a decision tree for a k-cube K it is possible to recursively108

proceed in the following way: select an index j ∈ DK (i.e. that is set to a dash)109

and make the root of the tree a node labeled with index j. Partition the cube K110

into two cubes Kj,0 and Kj,1 such that dash in position j is set to zero in Kj,0111

and to one in Kj,1. Recursively build decision trees for the two cubes of the112

partition, then make them the left and right children of the root, respectively.113

Recursion stops when the set of actions associated to a cube is non empty (i.e.114

AK 6= {∅}).115
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The gain of the obtained tree is strongly affected by the order used to select116

the index that determines the cube partition. A tree-compatible partition is117

a partition of cube K done according to an index j in DK , in which index118

j distinguishes between Kj,0 and Kj,1. There are k distinct tree-compatible119

partition for any k-cube K, one for each different index in DK . Moreover, each120

subcube of the partition has dashes in the same positions given by set DK \{j}.121

All rules of one subcube have condition in position j set to zero, while those in122

the other subcube have that condition set to one.123

Proposition 1. Given a k-cube K and any tree-compatible partition {Kj,0,Kj,1}

for K we have

PK = PKj,0 + PKj,1 and AK = AKj,0 ∩AKj,1 . (2)

Proof. The proof follows directly from the fact that {Kj,0,Kj,1} is a partition124

of K and from definitions of PK and Ak. �125

Observe that not all cube partitions are suitable for decision tree construc-126

tion, only tree-compatible ones are. Consider, for example, cube K = {00, 01, 10, 11}127

and the non tree-compatible partition K ′ = {00},K ′′ = {01, 10, 11}. As-128

sume that the intersection of actions associated to the cubes is empty (i.e.129

AK′ ∩ AK′′ = {∅}). Hence, the decision tree must have at least one internal130

node. Assume we label the node with index i = 1. To satisfy decision trees131

properties, rules of K ′ are to be placed in the subtree reached by following the132

outgoing arc labeled with zero, while rules of K ′′ should be placed in the subtree133

reached by following the outgoing arc labeled with one. But this is not possible134

as rule 01 ∈ K ′′ would be misplaced (it should be reached by following the out-135

going arc labeled with one). Analogously, assume we label the node with index136

i = 2, then rules of K ′ belong to the subtrees reached by following the outgoing137

arc labeled with zero to satisfy decision trees property, and hence rules in K ′′
138

are to be placed in the subtree reached by following the outgoing arc labeled139

with one. Again, this is impossible, as rule 10 ∈ K ′′ is misplaced.140
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3.1. Dynamic Programming Algorithm141

An optimal decision tree can be computed using a generalization of the142

Dynamic Programming strategy introduced by Schumacher et al. [1]: starting143

from 0-cubes and for increasing dimension of cubes, the algorithm computes the144

gain of all possible trees for all cubes and keeps track only of the ones having145

maximum gain. The pseudo-code is given in Algorithm 1.146

To prove the algorithm correctness we first concentrate on leaves, than we147

move forward to trees with internal nodes.148

Lemma 1. Given an OR-Decision Table DT and a k-cube K (for some 0 ≤149

k ≤ L), let AK be the set of actions associated by DT to cube K. If PK 6= 0 and150

AK 6= {∅}, then the optimal decision tree for K is unique and it is composed of151

only one node (a leaf).152

Proof. Assume, by contradiction, that there exist an optimal decision tree T153

for K with more than one node and such that gain(T ) = OPT is optimal.154

Then, there must exist two sibling leaves `0 and `1 such that:155

1. P`0 > 0 or P`1 > 0 (if such a pair does not exist, then it must be PK = 0,156

contradiction);157

2. dashes of their corresponding cubes are in positions in set D ⊆ DK (being158

siblings, the set of positions is the same) such that |D| = |DK | − 1;159

3. their parent is node v, labeled with i, for some 1 ≤ i ≤ L and i 6∈ D;160

4. A`0 ∩A`1 ⊇ AK 6= {∅}.161

Build a new decision tree T ′ for K by replacing node v in T with a new leaf `

corresponding to the cube K`0∪K`1 , and associate set of actions A`0∩A`1 6= {∅}.

The set of leaves of the new tree T ′ is given by ((L \ (`0 ∪ `1)) ∪ {`}) and the
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Algorithm 1 MGDT - Maximum Gain Decision Tree for OR-Decision Tables

1: for K ∈ R do . Initialization of 0-cubes in R ∈ K0

2: Gain∗K ← 0
3: AK ← DT (K) . the set of actions associated to rule K by the OR-decision

table
4: PK ← pK . the occurrence probability of rule K
5: end for
6: for n ∈ [1, L] do . for all possible cube dimensions > 0
7: for K ∈ Kn do . for all possible cubes with n dashes

. compute current cube probability and set of actions by means of a
tree-compatible partition

8: PK ← PKj,0 + PKj,1 . where j is any index in DK

9: AK ← AKj,0 ∩AKj,1

10: if PK = 0 then
11: Gain∗K ← 0
12: else
13: if AK 6= ∅ then
14: Gain∗K ← wjPK + Gain∗Kj,0

+ Gain∗Kj,1

15: else. compute gains obtained by tree-compatible partitions, one at the
time

16: for i ∈ DK do . for all positions set to a dash
17: GainK(i)← Gain∗Ki,0

+ Gain∗Ki,1

18: end for
. keep the best gain and its index

19: i∗K ← arg maxi∈DK
GainK(i)

20: Gain∗K ← GainK(i∗K)
21: end if
22: end if
23: end for
24: end for
25: BuildTree(R) . recursively build tree on entire set of rules R ∈ KL

26: procedure BuildTree(K)
27: if PK = 0 or AK 6= ∅ then

. create leaf corresponding to cube K and associated to set of actions AK

28: CreateLeaf(AK)
29: else

. recursively build trees on subcubes given by tree-compatible partition
distinguished by index i∗K

30: left← BuildTree(Ki∗
K

,0)
31: right← BuildTree(Ki∗

K
,1)

. create internal node labeled by index i∗K , with subtrees build by recursive calls
32: CreateNode(i∗K , left, right)
33: end if
34: end procedure
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gain of T ′ might be computed in the following way:

gain(T ′) = gain(T )− [gain(`0) + gain(`1)] + gain(`)

= OPT −

P`0

∑
j∈D

wj + P`1

∑
j∈D

wj

 +

+P`

∑
j∈D∪{i}

wj

= OPT + P`wi > OPT, (3)

as P` = P`0 + P`1 > 0 and wi > 0. Contradiction, T was supposed to have162

maximum gain. �163

Lemma 2. Given an OR-Decision Table DT and a k-cube K (for some 0 ≤164

k ≤ L), let AK be the set of actions associated by DT to cube K. If PK 6= 0165

and AK 6= {∅}, then algorithm MGDT associates to cube K a Gain∗K such that166

Gain∗K = PK

∑
i∈DK

wi. (4)

Proof. Proof is by induction on cube dimension. Base case: For 0-cubes we167

have (line 2) Gain∗K = 0 = PK

∑
i∈DK

wi, as DK = {∅}. Inductive hypothesis:168

assume they are true for cubes such that PK 6= 0 and AK 6= {∅}, having169

dimension up to k−1. Inductive step: Consider k-cube K such that k > 0, PK 6=170

0 and AK 6= {∅}. Then algorithm MGDT computes Gain∗K according to line 14.171

Observe that, for any j ∈ DK , the tree-compatible partition {Kj,0,Kj,1} has the172

following properties: (1) Kj,0 and Kj,1 are (k−1)-cubes; (2) PKj,0 +PKj,1 = PK173

and max{PKj,0 , PKj,1} > 0; (3) AKj,0 , AKj,1 6= {∅} and (4) DKj,0 = DKj,1 =174

DK \ {j}.175

Suppose at first that PKj,0 , PKj,1 > 0, hence, inductive hypothesis applies to176

both Kj,0 and Kj,1 and177
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Gain∗K = wjPK + Gain∗Kj,0
+ Gain∗Kj,1

(line 14)

using the inductive hypotesis

= wjPK + PKj,0

∑
i∈DK\{j}

wi + PKj,1

∑
i∈DK\{j}

wi

= PK

∑
i∈DK

wi.

Without loss of generality, suppose now that PKj,0 = 0 and PKj,1 > 0, then178

inductive hypothesis applies only to Kj,1, PK = PKj,1 and Gain∗Kj,0
= 0 (lines179

10-11). We have180

Gain∗K = wjPK + Gain∗Kj,1
(line 14)

using the inductive hypothesis

= wjPK + PK

∑
i∈DK\{j}

wi

= PK

∑
i∈DK

wi.

�181

Corollary 1. If PK = 0 or AK 6= {∅}, procedure BuildTree(K) computes an182

optimal decision tree for K with only one leaf.183

Proof. If PK = 0, the algorithm associates to K a gain equal to zero (lines184

10-11) and builds a tree that is a single leaf (line 28), optimal by definition and185

observation 1.1.186

If AK 6= {∅} and PK 6= 0, then by Lemma 1 the optimal tree must be a187

leaf. The algorithm builds a tree that is a single leaf (line 28) to which it is188

associated the gain of Equation (4) that is the definition of gain in the case in189

which the tree is a leaf. �190
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Lemma 3. Given an OR-Decision Table DT and a k-cube K such that P 6= 0

and AK = 0, let T be a decision tree for K of height h ≥ 1 and let T0 and T1

be the subtrees of T . The gain of the tree might be recursively computed in the

following way:

gain(T ) = gain(T0) + gain(T1).

Proof. Let L (resp. L0,L1) be the set of leaves of T (resp. T0, T1). We have191

that L = L0 ∪ L1, regardless form the fact that T0 or T1 are leaves or proper192

subtrees. We have193

gain(T0) + gain(T1)

=
∑
`∈L0

PK`

∑
j∈D`

wj

 +
∑
`∈L1

PK`

∑
j∈D`

wj


=

∑
`∈{L0∪L1}

PK`

∑
j∈D`

wj

 = gain(T ).

�194

Corollary 2. The maximum gain achievable by a decision tree for K is

max
i∈DK

(gain(Ki,0) + gain(Ki,1)). (5)

Corollary 3. If PK 6= 0 and AK = {∅}, procedure BuildTree(K) computes195

the optimal decision tree for K.196

Finally, we can conclude that197

Theorem 1. Given an expanded limited entry OR-Decision Table DT : {0, 1}L →198

2A \ {∅}, algorithm MGDT computes an optimal decision tree.199
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3.2. Computational time200

The algorithm considers 3L cubes, one for all possible words of length L on201

the three letter alphabet {0, 1,−} (for cycles in lines 6 and 7). In the worst202

case, for cube K of dimension n it computes: (1) the intersection of the actions203

associated to the cubes in one tree-compatible partition (line 9); this task can204

be accomplished, in the worst case, in time linear with the number of actions.205

(2) n gains, one for each index in DK (lines 16 - 18), each in constant time.206

The final recursive procedure for tree construction adds, in the worst case

(in which a complete binary tree is constructed) an O(2L) term. Hence, the

computational time of the algorithm is upper bounded by:

3L · (L + |A|) + 2L ∈ O(3L ·max{L, |A|}). (6)

3.3. About different types of decision tables207

In literature other decision tables have been studied, representing functions208

having different domain or co-domain and different meaning.209

Decision tables considered in [1] are description of functions DT : R → A,210

meaning that exactly one action to execute when rules occur. Therefore, these211

are a special case of the OR-decision tables considered in this paper (as A ⊂ 2A)212

and our algorithm can be applied to those decision tables as well. In this case,213

however, the intersection of the set of actions can be accomplished in O(1)214

computational time, leading to a tighter upper bound of the total computational215

running time, i.e. O(3L · L).216

AND-decision tables describe functions DT : R → 2A\{∅}, meaning that all217

actions in DT (r) must be executed when rule r occurs, contrarily to what hap-218

pens with OR-decision tables in which any action might be executed. Neverthe-219

less, our algorithm might be applied also in this case with a simple pre-processing220

of the decision table: build a new set of composed-actions A = {DT (r)|r ∈ R}221

and consider the OR-decision table that associates to rule r the composed-action222
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DT (r). In in this case, the worst case computational running time is upper-223

bounded by O(2L · 2|A| + 3L · L), where the first term comes from the table224

pre-processing (once this is done, intersections of the set of actions might be225

accomplished in O(1) also in this case).226

Compressed OR-Decision tables DT : ∪i∈[0..L]Ki → 2A \ {∅} assign a set227

of actions to cubes of rules. One might think that the algorithm might be228

used also in this case, by just making a leaf associated to all the rules in the229

cube that corresponds to a compressed rule. In Figure 1 we give a very simple230

example showing that, this approach, does not lead to the optimal decision tree.231

Hence, to derive a decision tree starting from a compressed table, we first have232

to expand the table (and might get a new table with size exponential in the size233

of the original one) or use a different approach.234

(C)

1 C 2 a1 a2

C 2

a1 a2

C1

C 2

a2 a1

a1
a2
/

ActionsRule

0 0

10

1 −

1

1

1 1

0 1

0 1

0 1

(A) (B)

C

Figure 1: Example showing that algorithm MGDT can not be applied to compressed OR-
Decision tables without expanding the table. (A) Compressed OR-Decision table with two
conditions C1 and C2, and two actions a1 and a2. We have wi = 1 for all conditions, and
pi = 1/4 for all rules. (B) and (C) Decision trees for the table in (A): labels of internal nodes
correspond to the conditions to be tested. Labels of leaves correspond to actions to take (if
more than one action is present, this means that any can be taken). Labels on edges represent
conditions testing outcome. (B) Tree build without splitting compressed rule 1−. This tree
has gain 1/2. (C) Tree build by splitting rule 1− having gain 1, greater that (B).

4. Decision Tables Applied to Image Processing Problems235

In this section we show how the described approach can be effectively applied236

to two common image processing tasks: connected components labeling and237

thinning. The former requires the use of OR-decision tables, while the latter238

only requires two mutually exclusive actions, thus implicitly leads to a single239
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entry decision table. Anyway, both can be improved by the application of the240

proposed technique.241

4.1. Connected components labeling242

Labeling algorithms take care of the assignment of a unique identifier (an243

integer value, namely label) to every connected component of the image, in244

order to give the possibility to refer to it in the next processing steps. This is245

classically performed in 3 steps [5]: provisional labels assignment and collection246

of label equivalences, equivalences resolution, and final label assignment.247

During the first step, each pixel label is evaluated by only looking at the248

labels of its already processed neighbors. When using 8-connectivity, these249

pixels belong to the scanning mask shown in Fig. 2(a). As mentioned before,250

during the scanning procedure, the same connected component can be assigned251

different (provisional) labels, so all algorithms adopt some mechanism to keep252

track of the possible equivalences.253

In the second step, all the provisional labels must be segregated into disjoint254

sets, or disjoint equivalence classes. As soon as an unprocessed equivalence is255

considered (online equivalent labels resolution, as in [6]), a “merging” between256

classes is needed, that is some operation which allows to mark as equivalent257

all labels involved. Most of the recent optimizations introduced in modern258

connected components labeling techniques aim at increasing the efficiency of259

this step (Union-Find algorithm [7]).260

Once the equivalences have been eventually solved, in the third step a second261

pass over the image is performed in order to assign to each foreground pixel the262

representative label of its equivalence class. Usually, the class representative is263

unique and is set to be the minimum label value in the class.264

In the recent literature, a set of works enclosed the main innovations in265

the field of connected components labeling. In 2005, Wu et al. [8] defined an266

interesting optimization to reduce the number of labels by exploiting a decision267

tree to minimize the number of neighboring pixels to be visited in order to268

evaluate the label of the current pixel. Authors indeed observed that in a 8-269
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connected components neighborhood, among all the neighboring pixels, often270

only one of them is sufficient to determine the label of the current pixel. In271

the same paper, authors proposed also a strategy to improve the Union-Find272

algorithm by means of an array-based data structure. In 2007, He et al. [9]273

proposed another fast approach in the form of a two scan algorithm. The274

data structure used to manage the label resolution is implemented using three275

arrays in order to link the sets of equivalent classes without the use of pointers.276

Adopting this data structure, He et al. [10] proposed a decision tree to optimize277

the neighborhood exploration applying merging only when needed.278

The procedure of collecting labels and solving equivalences may be described279

by a command execution metaphor : the current and neighboring pixels provide280

a binary command word, interpreting foreground pixels as 1s and background281

pixels as 0s. A different action must be taken based on the command received.282

We may identify four different types of actions: no action is performed if the283

current pixel does not belong to the foreground, a new label is created when284

the neighborhood is only composed of background pixels, an assign action gives285

the current pixel the label of a neighbor when no conflict occurs (either only286

one pixel is foreground or all pixels share the same label), and finally a merge287

action is performed to solve an equivalence between two or more classes and288

a representative is assigned to the current pixel. The relation between the289

commands and the corresponding actions may be conveniently described by290

means of a decision table.291

As shown in [8], we can notice that, in algorithms with online equivalences292

resolution, already processed 8-connected foreground pixels cannot have dif-293

ferent labels. This allows to remove merge operations between these pixels,294

substituting them with equivalent actions like assignments of either of the in-295

volved pixels labels. Extending the same considerations throughout the whole296

rule set, we can transform the original näıve decision table of Fig. 2(a) into297

the OR-decision table of Fig. 2(c), in which most of the merge operations are298

avoided and multiple alternatives between assign operations are available.299

When using 8-connection, the pixels of a 2 × 2 square are all connected to300
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Figure 2: The OR-decision table obtained by applying the nieghborhood information in 8-
connection. We get rid of most of the merge operations by alternatively using more lightweight
assign operations. An heuristic or an exhaustive search can be used to select the most conve-
nient action among the alternatives, here represented by bold 1s.

each other and a 2× 2 square is the largest set of pixels in which this property301

holds. This implies that all foreground pixels in a the block will share the same302

label. For this reason, scanning the image moving on a 2× 2 pixel grid has the303

advantage to allow the labeling of four pixels at the same time.304

Employing all necessary pixels in the enlarged neighborhood, we deal with305

L = 16 pixels(thus conditions), for a total amount of 216 possible combinations.306

Using the approach described in [2] leads to producing a decision tree containing307

210 nodes sparse over 14 levels, assuming all patterns occurred with the same308

probability and unitary cost for testing conditions. Instead, by using the algo-309

rithm proposed in this work, under the same assumptions, we obtain a much310

more compressed tree with 136 nodes sparse over 14 levels: the complexity in311

terms of levels is the same, but the code footprint is much lighter. Moreover, the312

resulting tree is proven to be the optimal one (Fig. 4). To push the algorithm313

performances to its limits, it is possible to add an occurrence probability for314

each pattern (pr), which can be computed off-line as a preprocessing stage on a315
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Figure 3: The direct comparison between the He’s approach (He08 ) with the three evolutions
of block based decision tree approach, from the initial proposal with heuristic selection be-
tween alternative rules (BBHDT ), further improved with the optimal decision tree generation
(BBOUDT ) and finally enhanced with a probabilistic weight of the rules (BBOPDT ).

reference dataset.316

To test the performance of the optimal decision tree, we used a dataset of317

Otsu-binarized versions of 615 high resolution page images of the Holy Bible of318

Borso d’Este, one of the most important Renaissance illuminated manuscript,319

composed by Gothic text, pictures and floral decorations. This dataset gives us320

the possibility to test the connected components labeling capabilities with very321

complex patterns at different sizes, with an average resolution of 10.4 megapixels322

and 35000 labels, providing a challenging dataset which heavily stresses the323

algorithms.324

We performed a comparison between the following approaches:325

• He et al. [10] approach (He08 ), which highlights the benefits of the Union-326

Find algorithm for labels resolution and the use of a decision tree to op-327

timize the memory access.328

• The block based approach with decision tree generated with heuristic se-329

lection between alternatives as previously proposed in [2] (BBHDT )330

• The block based approach with optimal decision tree generated with the331

procedure proposed in this work, assuming uniform distribution of pat-332

terns (BBOUDT)333
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Figure 4: The extended mask used in BBOUDT method and the optimal decision tree ob-
tained. Each node in the tree represents a pixel of the mask to check, each leaf represents
a possible action to take, the left branch means having a background pixel while the right
branch means having a foreground pixel (for more details, please refer to [2]). For example,
reading the tree we can say that if o is background, s is foreground, p is background and r is
foreground (thus checking 4 pixel over 16) is sufficient to take an action for all the foreground
pixels of the current block (action 6 in Fig.17 of [2] corresponds to the assigment of the label
of block S, its leftmost one.)

• The block based approach with optimal decision tree with weighted pattern334

probabilities (BBOPDT )335

For each of these algorithms, the median time over five runs is kept in order to336

remove possible outliers due to other tasks performed by the operating system.337

All algorithms of course produced the same labeling on all images, and a uniform338

cost is assumed for condition testing. The tests have been performed on a Intel339

Core 2 Duo E6420 processor, using a single core for the processing. The code340

is written in C++ and compiled on Windows 7 using Visual Studio 2008.341

As reported in Fig. 3, we confirm the significant performance speedup of the342

BBHDT, which shows a gain of roughly 29% over the previous state-of-the-art343

approach of He et al.. The optimal solution proposed in this work (BBODT)344

just slightly improves the performance of the algorithm. With the use of the345
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Figure 5: Pixels in the 4× 4 neighborhood are numbered in row major ordering, with current
pixel being P5.

probabilistic weight of the rules, in this case computed on the entire dataset, we346

can push the performance of the algorithm to its upper bound, showing that the347

optimal solution gains up to 3.4% of speedup over the original proposal. This348

last result, suggests that information about pattern occurrences should be used349

whenever available, or produced if possible.350

Source code and datasets used in this tests are publicly available online [11].351

Both the machine and the datasets are the same used in [2].352

4.2. Image Thinning353

Thinning is a fundamental algorithm, often used in many computer vision354

tasks, such as document images understanding and OCR. A lot of algorithms355

have been detailed in literature to solve the problem, both in sequential or356

parallel fashion (according to the classification proposed by Lam et al. [12]).357

One the most famous algorithms was proposed by Zhang and Suen [13]. The358

algorithm (ZS) consists in a two subiterations procedure in which a foreground359

pixel is removed if a set of conditions is satisfied. Starting from the current360

pixel P1, the neighboring pixels are enumerated in clockwise order as shown in361

Fig. 5.362

Let k = 0 during the first subiteration and k = 1 during the second one.363

Pixel P1 should be removed if the following conditions are true:364

a. 2 ≤ B(P1) ≤ 6365

b. A(P1) = 1366

c. P2 ∗ P4 ∗ P6 = 0 if k = 0367

c’. P2 ∗ P4 ∗ P8 = 0 if k = 1368
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Figure 6: Decision trees for Zhang and Suen and Holt et al. thinning algorithms. As for
labeling, nodes represent pixels to check, leafs represent actions to take, that in the case of
labeling are limited to mantain or remove the current pixel. The left branch means having a
background pixel while the right branch means having a foreground pixel.

d. P4 ∗ P6 ∗ P8 = 0 if k = 0369

d’. P2 ∗ P6 ∗ P8 = 0 if k = 1370

where A(P1) is the number of 01 patterns in clockwise order and B(P1) is the371

number of non zero neighbors of P1.372

Holt et al. [14] algorithm (HSCP) is built on the ZS algorithm by defining373

an edge function E(P ) which returns true if, browsing the neighborhood in374

clockwise order, there are one or more 00 patterns, one or more 11 patterns and375

exactly one 01 pattern. The algorithm thus has a single type of iteration which376
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removes a foreground pixel if the following conditions are true:377

1. E(P1) = 1378

2. E(P4) ∗ P2 ∗ P6 = 0379

3. E(P6) ∗ P8 ∗ P4 = 0380

4. E(P4) ∗ E(P5) ∗ E(P6) = 0381

It should be noted that the edge function requires checking all neighbors of the382

analyzed pixel, thus the window used by the HSCP algorithm has a size of 4×4.383

This algorithm reduces the number of iterations required, but the need to access384

more pixels makes it slower when implemented on sequential machines [15]385

These thinning techniques can be modeled as decision tables in which the386

conditions are given by the fact that a neighboring pixel belongs to the fore-387

ground, and the only two possible actions are removing the current pixel or not.388

The ZS algorithm has also another condition, that is the value of subiteration389

index k. This results in a 9 conditions decision table for the ZS algorithm (512390

rules) and 16 conditions (the pixels of a 4 × 4 window) for HSCP algorithm391

(65536 rules). We ran the dynamic programming algorithm obtaining the two392

optimal decision trees shown in Fig. 6. We ignored patterns probabilities in this393

test. These trees represent the best access order for the neighborhood of each394

pixel. The leaves of the trees are the two actions: 1 means “do nothing”, while395

2 means “remove”. The left branch should be taken if the pixel referred in a396

node is background, otherwise the algorithm should follow the right one.397

We compared the original ZS and HSCP with their version based on optimal398

decision trees. The procedures were used to thin a set of binary document im-399

ages, composed by 6105 high resolution scans of books taken from the Gutenberg400

Project [16], with an average amount of 1.3 millions of pixels. This is a typical401

application of document analysis and character recognition where thinning is a402

commonly employed preprocessing step.403

The results of the comparison are reported in Table 1. The use of the decision404

trees significantly improves the performance of both ZS and HSCP algorithms.405

A second important result is that on average HSCP, despite being slower then406
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Table 1: Comparison of the different thinning strategies and algorithms

Average ms fastest
ZS 1633 0%
ZS+Tree 1495 9%
HSCP 2493 0%
HSCP+Tree 1371 91%

ZS on sequential machines, becomes the fastest approach when the memory407

access is optimized with our proposal. In fact in 91% of the cases, it turns408

out to be the fastest solution, mainly because the overall cost of an iteration is409

strongly reduced, thus the low number of iterations becomes the key factor in410

its success. With respect to the original ZS technique, the tree based version is411

around 10% faster, while HSCP is improved of around a 45%. This is supported412

by the observation that the larger the window, the higher the saving can be.413

HSCP+Tree is around 20% faster than the original ZS approach.414

5. Conclusions415

In this paper we presented a general modeling approach for local image416

processing problems, such as connected components labeling and thinning, by417

means of decision tables and decision trees. In particular, we leverage on OR-418

decision tables to formalize the situation in which multiple alternative actions419

could be performed, and proposed an algorithm to generate an optimal deci-420

sion tree from the decision table with a formal proof of optimality. The ex-421

perimental section evidence how our approach can lead to faster results than422

other techniques proposed in literature, and more importantly suggests how this423

methodology can be successfully applied to a lot of similar problems.424
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